用创新的技术,为客户提供高效、绿色的驱动解决方案和服务

以科技和创新为客户创造更大的价值

公司新闻

hbase存储数据结构(hbase的数据存储结构)

时间:2024-08-21

深入理解HBASE(3.4)RegionServer-Memstore

理想情况下,在不超过hbase.regionserver.global.memstore.upperLimit的情况下,Memstore应该尽可能多的使用内存(配置给Memstore部分的,而不是真个Heap的)。下图展示了一张“较好”的情况:hbase使用的是jdk提供的ConcurrentSkipListMap,并对其进行了的封装,Map结构是KeyValue,KeyValue的形式。

MemStore 是 HBase 非常重要的组成部分,MemStore 作为 HBase 的写缓存,保存着数据的最近一次更新,同时是HBase能够实现高性能随机读写的重要组成。HBase Table 的每个 Column family 维护一个 MemStore,当满足一定条件时 MemStore 会执行一次 flush,文件系统中生成新的 HFile。

regionServer 其实是hbase的服务,部署在一台物理服务器上,region有一点像关系型数据的分区,数据存放在region中,当然region下面还有很多结构,确切来说数据存放在memstore和hfile中。

HBase MemStroe MemStore主要保存数据更新在内存中,以字典序的KeyValue形式存储。每个column family会有一个对应的memstore。更新的数据在memstore中以key-value形式排好序存储。3 HBase region flush 当MemStore存储足够数据,整个有序集会被写入一个新的HFile文件中,保存在HDFS。

以下哪些场景比较适合hbase

1、交通方面:船舶GPS信息,全长江的船舶GPS信息,每天有1千万左右的数据存储。 金融方面:消费信息,贷款信息,信用卡还款信息等 电商:淘宝的交易信息等,物流信息,浏览信息等 移动:通话信息等,都是基于HBase的存储。

2、用户画像 比如大型的视频网站,电商平台产生的用户点击行为、浏览行为等等存储在HBase中为后续的智能推荐做数据支撑。

3、然而,HBase并非万能的解决方案,它有其适用范围。数据存储仅是基础,如果涉及到深度分析或大规模范围查询,HBase可能无法满足需求。例如,频繁的全表扫描对于海量数据来说效率极低,不适合大范围的查询操作。因此,HBase在选择和使用时,需要根据业务需求和性能要求来精准定位。

大学大数据专业学什么

大数据专业需要学习的课程包括数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

大数据专业主要学习数据处理、大数据分析、机器学习等相关领域的知识。数据处理 在大数据专业中,数据处理是核心课程之一。学生需要掌握数据清洗、数据整合和数据仓库等技术,以便有效地管理和处理海量数据。数据清洗涉及数据去重、缺失值处理、异常值检测等内容,确保数据的准确性和一致性。

大学大数据专业学习数据存储与管理、数据处理与分析、大数据平台和工具、数据科学导论、数据结构等。数据存储与管理:学习各种数据存储技术,包括关系型数据库(MySQL、Oracle)、分布式文件系统(Hadoop HDFS)和NoSQL数据库(MongoDB、Cassandra),以及数据管理和数据仓库技术。

Hbase与HDFS是什么关系?

1、他们的关系是:hbase是一个内存数据库,而hdfs是一个存储空间;是物品和房子的关系。hdfs只是一个存储空间,他的完整名字是分布式文件系统。从名字可知他的作用了。hbase是一个内存数据库,简单点说hbase把表啊什么的存在hdfs上。Hbase与HDFS的性质和属性。Hbase是Hadoop database,即Hadoop数据库。

2、HDFS是GFS的一种实现,他的完整名字是分布式文件系统,类似于FAT32,NTFS,是一种文件格式,是底层的,Hadoop HDFS为HBase提供了高可靠性的底层存储支持。HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统。

3、具体来说,HBase使用HFile作为基本的数据存储格式,这与HDFS是类似的。但是,HBase不仅使用HDFS来存储数据,而且还通过与Hadoop生态系统中的其他组件(如MapReduce和Pig)集成,以支持高效的并行处理和分析数据的能力。这种处理和分析的能力使得HBase能够在数据规模达到PB级别的情况下进行复杂的查询和数据挖掘。

4、HBase是一个基于Apache Hadoop的面向列的NoSQL数据库,是Google BigTable的开源实现。它运行在HDFS之上,为Hadoop提供类似于BigTable规模的服务。HBase针对半结构化数据,是一个多版本的、可伸缩的、高可靠的、高性能的、分布式的和面向列的动态模式数据库。